Job shop scheduling: Operations

- Task is to schedule a set of *jobs* subject to a set of *constraints*
- Each job has a process plan
 - Consisting of operations needed to complete the job
 - Each operation, i, has a processing time, p_i
 - Sequencing constraints between operations
 - If operation i precedes operation j, denoted $i \rightarrow j$, then

$$st_i + p_i \le st_j$$

- Each job J has a ready time, r_J , and a deadline, d_J
 - For each operation i of job J

$$r_{J} \le st_{i}$$

$$st_{i} + p_{i} \le d_{J}$$

Job shop scheduling: Resources

- Operations need *resources*
 - At most one operation may use a resource at any given time
- If operations *i* and *j* require the same resource, then

$$st_i + p_i \le st_j$$
 or $st_j + p_j \le st_i$

Search framework

- View problem as that of establishing *sequencing constraints* between pairs of operations that share a common resource
- For operations *i* and *j* that share a common resource
 - Decision $i \rightarrow j$ leads to constraint

$$st_i + p_i \le st_j$$

- Decision $j \rightarrow i$ leads to constraint

$$st_j + p_j \le st_i$$

• At the start and after each decision, compute the *earliest* (est_i) and latest (lst_i) start time of each operation i

Ordering of operations

- Case 1: If $est_i + p_i \le lst_j$ and $est_j + p_j > lst_i$
- Case 2: If $est_i + p_i > lst_j$ and $est_j + p_j \le lst_i$
- Case 3: If $est_i + p_i > lst_j$ and $est_j + p_j > lst_i$
- Case 4: If $est_i + p_i \le lst_j$ and $est_j + p_j \le lst_i$

Search procedure

- Initialize start time bounds using *bellman-ford* on the distance graph *G* resulting from the operations constraints
- Select an unsequenced pair of operations that require the same resource, select a sequence, and propagate the constraint
 - First select operations that satisfy Cases 1 or 2
 - Select among pairs that satisfy Case 4 using the variable and value ordering heuristic
 - Backtrack if an inconsistency is detected
 - Resulting distance graph contains negative cycles
 - Operations that satisfy Case 3 are detected

Variable and value ordering heuristics

• For unordered operations *i*, *j* that share a resource, define the *temporal slack*:

$$-Slack(i \rightarrow j) = lst_j - (est_i + p_i)$$

$$-Slack(j \rightarrow i) = lst_i - (est_j + p_j)$$

- Overall slack of a decision is
 - $-Min(Slack(i \rightarrow j), Slack(j \rightarrow i))$
- Variable ordering heuristic: Pick the decision with the *minimum* overall slack
- Value ordering heuristic:
 - Select $i \rightarrow j$ if $Slack(i \rightarrow j) \ge Slack(j \rightarrow i)$
 - Select $j \rightarrow i$ otherwise

Constraint propagation

- Adding decision $i \rightarrow j$ to the distance graph G corresponds to adding and edge from j to i with weight $-p_i$
- d_{0i} and d_{i0} can be computed
 - Directly using bellman-ford
 - Incrementally using constraint propagation
 - Relaxing an edge from *j* to *i* can update distance to *i*
 - If the distance to *i* is updated, then one needs to relax every edge (*i*, *k*)
 - Stop propagation if
 - For some node i, $est_i > lst_i$ or
 - The original edge is successfully relaxed twice